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ABSTRACT

KEYWORDS: Conversational speech, voice adaptation, analysis, speech

synthesis, classroom lectures

Voice adaptation and conversion have especially gained impetus in the

personification of speech-enabled systems, movie dubbing, lecture dubbing, singing

voice transformation, and voice adaptation for speech disordered patients. The

accessibility of mobile phones in interior regions in India and numerous online

educational content have led to the demand for lectures being available in regional

languages. While transcreation of lecture videos in a number of different languages

is a tall order, an attendant problem is the transcreation of the video in the original

speaker’s voice. The voice synthesized in the target language needs to be matched

to that of the source voice. This is difficult even for read speech but becomes even

more complex for conversational speech. We examine classroom lectures with the

objective of dubbing lectures from English to various Indian languages. The task is

challenging as there are many problems associated with it. Firstly, classroom lectures

are essentially conversational with fluctuations in speaking rate and contain disfluencies

due to typical speaker mannerisms. Secondly, we attempt to perform cross-lingual

voice transformation from English to Indian languages (e.g., Hindi, Kannada), which

are phonotactically very different.

Most speech synthesis and voice conversion systems are trained on "read-

speech," where the speech is rehearsed, unlike conversational speech, which is

spontaneous. We analyze why Text-to-Speech (TTS) synthesis systems, which produce

highly intelligible and robust audios for read speech, fail to model conversational

speech. We compare read speech and conversational speech with respect to pitch

variation, syllable rate variation, and signal-to-noise ratio (SNR) and identify the

differences. Due to the lack of a conversational multispeaker dataset, we create our

own dataset for the analysis task. Since the lecture transcriptions are generated by an

Automatic Speech Recognition (ASR) model and manual curation is cumbersome, we

devise data pruning techniques to curate the data and use this data to train a TTS model.
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Further, to achieve the objective of dubbing lectures from English to Indian

languages, a bilingual (Indian language + English) text-to-speech model trained on

read speech is adapted to the required speaker’s voice using a minimally transcribed

lecture recording. The novelty of this work lies in adapting read speech models using

conversational speech data to generate the target speaker’s voice. The ASR-generated

transcriptions are manually curated to maintain accurate text-audio correspondence.

Two different frameworks have been used for adaptation – HTS (HMM-based speech

synthesis system), a statistical parametric model, and E2E (End-to-End), a neural

network-based model. X-vectors are used as speaker embeddings in the E2E framework

to enhance speaker characteristics. The analysis and findings pave the way for further

exploration of conversational TTS, cross-lingual voice adaptation, and voice conversion

in a low-resource scenario.
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CHAPTER 1
INTRODUCTION

Speech synthesis research has made remarkable advancements in recent years.

Statistical models such as Hidden Markov Model (HMM) based speech synthesis

using STRAIGHT (Kawahara, 2006) vocoder are now capable of synthesizing audio

equivalent to that of human-produced speech. End-to-End (E2E) systems, the current

state-of-the-art in speech synthesis, are at par or even better than statistical models.

E2E systems take into account the entire sentence while synthesizing speech. This

leads to good prosody across the whole sentence. However, the performance of these

speech synthesis systems is limited to the reproduction of read speech. Training such

systems with conversational speech leads to poor synthesis owing to the disfluencies

in conversations and unstructured sentences. The fluctuations in speaking rate and

pitch, abrupt pauses, and incomplete sentence endings pose difficulty in training a

conversational speech synthesis model. There are also no standard conversational

speech datasets. Neural networks require a huge amount of clean data for training which

adds to the challenge. Although attempts have been made to use conversational speech

data in automatic speech recognition and machine translation tasks, very few attempts

have been made to build text-to-speech models from scratch using conversational

speech.

Most real-world speech applications like chatbots and voice assistants use

conversational speech to facilitate better user-computer interactions. Hence, it

is essential to understand the fundamental differences between read speech and

conversational speech and deploy technologies to develop robust conversational TTS

systems. Taking a further step towards conversational speech research, we explore

conversational speech cross-lingual voice adaptation. This is furthermore challenging

due to the vast variations between the speaking styles of different speakers. Imbibing a

person’s voice in a different language poses severe difficulty due to the variations in the

phonotactics of the two languages. In this thesis, we use open-source online educational

lectures as conversational speech datasets and attempt to generate the lecturer’s voice

in a target Indian language.



This chapter is organized as follows: Section 1.1 discusses the motivation for

pursuing cross-lingual voice adaptation for conversational speech. Section 1.2 digresses

into the different applications of conversational speech voice adaptation. The overview

of the thesis is discussed in Section 1.3. Section 1.4 and Section 1.5 encompasses the

major contributions and the organization of the thesis respectively.

1.1 MOTIVATION

The rapid technological drift towards online educational platforms has led to the

availability of numerous educational videos online. These course lecture recordings

are open-source and easily accessible forms of conversational speech data. Most of

these lectures are available in English. The transcreation of these videos in various

Indian languages can help reach many target audiences, even in the interior regions of

our country. According to a survey conducted in India, about 75% of students receive

their primary and secondary education in the vernacular language (AiutoConsulting,

2020). At the same time, most of the undergraduate courses are taught in English.

Undergraduate lecture availability in various Indian languages can be an initiative to

alleviate the language barrier between English and Indian languages. To present a

real-time scenario and enhance the user experience, the original speaker’s voice in

the dubbed videos will sound more natural. With this objective of dubbing technical

lectures from English to Indian languages, we explore classroom lectures which are

conversational and spontaneous. Two motives support the objective - enhancing

naturalness in the synthesized audios and imparting the speaker’s voice characteristics

using a small amount of data.

A typical dubbing system involves recognizing the original speech using

Automatic Speech Recognition (ASR), translating the recognized text into the required

native language using Machine Translation (MT), synthesizing the translated text, and

voice adaptation to generate the synthesized sentences in the speaker’s voice and to

sync the synthesized audio with the original video (Figure 1.1). The task is difficult

as class lectures are extempore, with prosodic variations and mannerisms inherent to a

particular speaker that lead to disfluencies. Hence, preserving the speaker’s voice in a

cross-lingual setting (English to Indian languages) becomes more challenging.

2



Fig. 1.1: Flowchart of a typical dubbing system. The highlighted block is the voice
adaptation module.

1.2 APPLICATIONS

Apart from lecture dubbing, there are several other applications of conversational

speech voice conversion and adaptation.

Real-time dialogue conversion

As shown in Figure 1.2, we can convert the content spoken by the general public

to sound like Amitabh Bachchan. Dialogue-conversion systems are widely used in

movie dubbing by preserving the voice of the original actor to present a better audience

experience. It is also used for creating a voice-over for characters such as Doraemon

and Donald Duck to sound like cartoon voices.

Fig. 1.2: Real-time dialog conversion
[1] Image Courtesy: Wikimedia Commons, CC-BY-SA-2.0
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Voice adaptation for speech disorder patients

Many people suffer from speech disorders when the larynx (voice box) does not work

due to laryngeal cancer, radiation exposure, or injury. Even in dysarthria, patients

suffer from motor speech. In such cases, voice adaptation techniques can be applied

to generate the speech in the original speaker’s voice and help in better communication.

Singing voice transformation

The application of voice conversion can be extended to singing voice transformations.

Songs sung by one artist can be converted to voices of different artists and in a different

language using different voice adaptation techniques.

1.3 OVERVIEW OF THE THESIS

This thesis encompasses three aspects of speech technology - conversational speech,

voice adaptation, and speech synthesis in Indian languages. First, it aims at

understanding the fundamental difference between read-speech – which is rehearsed

or scripted and conversational speech – which is spontaneous and unrehearsed. An

extensive study is performed to demonstrate the variability in the speaking styles of

different individuals while delivering a class lecture. An attempt is made to build a

conversational text-to-speech synthesis model. Since classroom lectures are extempore,

the task becomes more challenging due to the lack of manually curated transcriptions.

The transcriptions are generated using automatic speech recognition models, which

may be inaccurate. Other factors also influence training a TTS directly from lecture

data; hence, pruning techniques are employed to curate the data to make it suitable for

building robust conversational speech TTS systems.

The ultimate objective is to generate the target speaker’s (lecturer) voice in any

Indian language using minimally transcribed English data. Owing to the lack of Indian

language data in the target speaker’s voice, we propose to adapt a read-speech model

using the conversational speech of the required speaker. The task is challenging because

of the absence of manually annotated data for a particular speaker. The first part

of the work discusses the issues in training a conversational text-to-speech synthesis

system. The second part discusses two different speaker adaptation approaches using

conversational speech data - one in the Hidden Markov Model-based speech synthesis

4



system (HTS) framework and the other in the End-to-End (E2E) framework using read-

speech to train the initial model. Further, the adapted systems are compared, and the

results are discussed.

1.4 CONTRIBUTION OF THE THESIS

The major contributions of this thesis are as follows :

• Analyzing the challenges involved in dealing with conversational speech when
compared to read-speech

• Proposing pruning techniques to curate conversational speech data for training
and adaptation

• Attempting cross-lingual voice adaptation to Indian languages using a small
amount of speaker’s data in a conversational scenario

1.5 ORGANIZATION OF THE THESIS

This thesis deals with –

• conversational speech

• voice-adaptation and voice-conversion

• speech synthesis in the context of Indian languages

Chapter 2 discusses the related literature in ASR and TTS using conversational

speech. Further, an overview of different types of voice conversion and the state-of-

the-art techniques are discussed. We further dive into the technologies used for speech

synthesis and related work in the field of speech synthesis for Indian languages and

discuss the paradigms used in the thesis.

In Chapter 3, an attempt is made to understand the differences between read

speech and conversational speech. We discuss the issues regarding syllable rate, pitch,

Signal-to-Noise Ratio (SNR), and disfluencies. We also indicate the possible errors

in ASR transcripts. A comparative study of read speech and conversational speech

from different speakers is attempted. Further, techniques for pruning the data are

proposed to eliminate the manual effort and build intelligible and natural-sounding

TTS. A conversational TTS system is trained using lecture data and compared with

a TTS built using read speech data.

5



In Chapter 4, we discuss the phonotactic differences between English and Indian

languages, which pose difficulty in cross-lingual voice adaptation. Handling of multi-

lingual text and parsing techniques are discussed. Further, we propose adapting read-

speech models using a small amount of lecture data to generate speaker characteristics.

Two different speaker adaptation techniques are attempted - one in the Hidden Markov

Model (HMM) speech synthesis system (HTS) and the other in an End-to-End (E2E)

framework. The trained and adapted systems are compared, and the evaluation results

are discussed. The extension of the techniques to multiple speakers and multiple

languages is explored.

The summary of the thesis, scope for improvement, and future research

directions are stated in Chapter 5.

6



CHAPTER 2

BACKGROUND AND RELATED WORK

2.1 INTRODUCTION

Voice conversion has especially gained impetus in the context of online learning. With

the outburst of the Covid-19 pandemic and numerous freely available online educational

lectures, there has been an increased demand for technical lecture transcreation in

Indian languages. We focus on the problem of imparting the target speaker’s voice

in an Indian language using classroom lectures that are in English. Classroom lectures

are spontaneous and impromptu in contrast to read speech, which is scripted. We use

open-source online technical lectures as a conversational speech dataset. The work

deals with three aspects of speech technology — conversational speech in the form

of classroom lectures, voice conversion and adaptation to the target speaker’s voice,

and speech synthesis for Indian languages to generate the target voice in a different

language. Hence, the related work in all these three research directions is discussed.

In this chapter, Section 2.2 discusses different speech recognition and synthesis

attempts using conversational speech. We review other techniques that have been

applied in speech recognition to improve the error rate in the case of spontaneous

speech recognition, handling disfluencies, and generating conversational-like voices.

Conversational speech synthesis using manually curated data in a statistical and

neural framework is explained. Section 2.3 elaborates different voice conversion

and adaptation approaches. The incremental development in the domain of voice

conversion, starting from spectral mapping (Desai et al., 2010) to non-parallel and

cross-lingual voice conversion, is discussed. Further, different techniques that are

needed for speech synthesis in Indian languages and the approaches used in this thesis

are stated in Section 2.4 and Section 2.5 respectively. The summary of the chapter is

given in Section 2.6.



2.2 CONVERSATIONAL SPEECH : AN OVERVIEW

Conversational speech recognition and synthesis have always been a great challenge

to the speech research community. The distinct speaker mannerisms, prosodic

modulations, and syntactic conventions during conversations are very different from

that of read speech which is just read aloud from a written transcription. Although

conversational systems form the most important real-time application of speech, very

few attempts have been made to build a text-to-speech (TTS) synthesizer using

conversational data. This is because of the lack of hand-annotated conversational

corpus, which is necessary for building robust models for recognition and synthesis

tasks. Disfluencies, which are inherent to spontaneous speech, add further to the

difficulty of the problem.

Several techniques have been proposed in the context of conversational speech

recognition and segmentation. Meteer and Iyer (1996) use Switchboard Corpus with

annotated disfluencies and filler words. They attempt to answer how conversational

structure differs from the formal written structure and how these differences can be

incorporated into the language model to improve speech recognition tasks. Dufour

et al. (2009) present acoustic and linguistic cues for identifying spontaneous speech

segments from an extensive audio database using the underlying characteristics of

conversational speech. Rangarajan and Narayanan (2006) characterize the issue of

repetitions in spontaneous speech and address the problem by building multiword level

models for modeling the repetitions along with acoustic prosodic modeling. This helps

in improving the ASR transcription error in the case of decoding conversational speech

having multiple repetitions. Nanjo and Kawahara (2003) discuss unsupervised speaker-

specific language model adaptation to handle the pronunciation variation in the case of

spontaneous speech recognition. This is very vital to account for speaker variability to

improve transcription accuracy.

The research in building text-to-speech synthesizers using conversational data

is still at its inception because the filler pauses in conversations affect the model

intelligibility. Still, attempts have been made to generate conversation-like voices as

it is more expressive and enhances interactability. Sundaram and Narayanan (2003)
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mention an empirical text processing method before speech synthesis using parts

of speech (POS) taggers to generate spontaneous speech. However, this does not

make use of conversational speech data. Andersson et al. (2012) present the idea

of using conversational data for building an HMM-based speech synthesis model

and attempts to incorporate the conversational phenomena in synthesized speech.

Despite poor alignment at the phoneme level and variability in context, the synthesized

audios sounded natural. A study by Székely et al. (2017) discusses building a deep

neural network (DNN) speech synthesizer using conversational speech, which allows

elongation of syllables, insertion of disfluencies, and voice modulation controls. The

study indicates the effect of added disfluencies as perceived by a listener. However,

both the works rely on a small amount of hand-annotated data where the filler

pauses, disfluencies, and sentence-ending are marked carefully. Székely et al. (2019b)

suggests that conversational speakers can be categorized into distinct breath groups.

Breaths highly correlate to prosody and are agnostic to language or transcriptions.

Breath duration can be exploited to segment audios and annotate a single speaker’s

conversational data, which can be further used for building robust TTS models.

Székely et al. (2019a) uses podcast recordings, segments it using breath detectors, and

transcribes automatically using Google Cloud API. As suggested by Baumann et al.

(2017), since Google Cloud API omits filler pauses, disfluencies, and hesitations, IBM

Watson Speech to Text API was used. Pronunciation and conversational characteristics

were evaluated to show what is achievable in the field of conversational TTS. Baumann

et al. (2017) describes the potential challenges in transcribing a dialogue system as the

utterances may not be semantically correct.

2.3 VOICE CONVERSION AND ADAPTATION : AN OVERVIEW

Voice conversion (VC) is an important area of research in the speech domain. Given a

source and a target speaker’s speech signal, the task is to convert the audio signal from

the source voice to the target by preserving the target’s voice characteristics and the

source’s linguistic content. Speaker adaptation is a type of voice conversion wherein

a pre-trained model is fine-tuned to generate the target speaker’s voice. Based on the

availability of the training data, voice conversion can be categorized into – parallel voice
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conversion and non-parallel voice conversion.

In the case of parallel VC, the same utterances are present for the source and the

target speakers. The availability of parallel data facilitates finding a mapping function

between the source and the target acoustics. Several works have been attempted in

the literature on parallel voice conversion. Parallel corpora VC techniques include

vector-quantization (Abe et al., 1988), spectral mapping (Desai et al., 2010; Toda

et al., 2005), Gaussian Mixture Models (GMMs) followed by Dynamic Time Warping

(DTW) (Toda et al., 2001), Maximum Likelihood Parameter Generation (MLPG)

(Toda et al., 2005) and Linear Multivariate Regression (LMR) (Valbret et al., 1992)

to understand the dynamic trajectory. Abe et al. (1988) presents the idea of finding

individual codebooks for source and target. Spectrum parameters, power values,

and pitch frequencies are quantized separately. Further, DTW is performed for the

parallel utterances, and histogram correspondence for codebook vectors of the target is

computed as a linear combination of each codebook vector of the source. Stylianou

et al. (1998) discuss finding a conversion function for the target using GMMs of

the source speaker’s spectral envelope. Mel-frequency Cepstral Coefficient (MFCC)

features are used as they are decorrelated and hence do not degrade the performance

even on using diagonal covariance matrices. Statistical parametric models like GMMs

allow acoustic space modeling by pooling the source and target data into one codebook

and finding a mapping between them. Spectral mapping between source and target

speakers is performed using a Gaussian mixture model (GMM) of the joint probability

distribution of the two speakers (Toda et al., 2005). The technique is based on maximum

likelihood estimation of spectral trajectory and outperforms frame-by-frame mapping

techniques. Attempts have been made in the VC domain by reconstruction using

framewise mapping of Linear Predictive Coefficient (LPC) features (Kain and Macon,

1998) and modifying pitch range to match the target. However, this was performed at

the diphone level, not the utterance level.

The major challenge in VC is the availability of a limited amount of parallel

corpora between the source and the target for learning the phonetic and prosodic

mapping between the two speakers. Due to this limitation, exhaustive research has

been carried out in non-parallel VC. Zhu and Yu (2012) proposes the idea of building
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a Universal Background Model (UBM) by pooling all the speakers’ data and then

performing maximum a posteriori (MAP) adaptation to obtain the transformation

function. Deep learning methods like speaker disentanglement (Chou et al., 2018),

one-shot voice conversion (Chou and Lee, 2019), and various other encoder-decoder

architectures have been proposed in the literature to achieve natural-sounding speech.

In speaker disentanglement, the linguistic and the acoustic features are disentangled.

During synthesis, the target acoustic features and the source linguistic features are

combined together to generate the speech in a target voice. Cross-lingual VC, i.e.,

changing the target speaker’s language, adds to the difficulty of non-parallel VC

since different languages have different phonetic representations. Cross-lingual VC

approaches include bilingual phonetic posteriorgram and averaged models (Zhou et al.,

2019), Generative Adversarial Network (GAN) (Sisman et al., 2019), frame alignment

methods (Erro and Moreno, 2007) and variational autoencoders (Mohammadi and

Kim, 2018). Bilingual and code-switched TTS is trained by Zhao et al. (2020) to

perform cross-lingual VC using Mandarin and English data. The underlying approach

in most cross-lingual VC is to separate the speaker and content representation during

the training phase and plug back the target speaker and the source content during the

decoding stage, similar to speaker disentanglement.

In speaker adaptation, extensive research is being carried out to limit the amount

of data required to impart speaker characteristics in the synthesized utterances. Kim

et al. (2021) uses geometric constraints to learn discriminative speaker representations.

A TTS model is trained on a large multispeaker database and fine-tuned using a few

minutes of target data. Moss et al. (2020) presents the idea of few shot adaptation

Bayesian Optimization For FIne-tuning Neural Text To Speech (BOFFIN TTS). Chen

et al. (2021) developed models to adapt to custom voices and handle different acoustic

conditions. Yan et al. (2021) developed a TTS model for spontaneous-style speech,

which sounds like the target voice. Prakash and Murthy (2020) discusses building

generic voices for Indo-Aryan and Dravidian languages, which flexibly scales up to

unseen languages and unseen speakers with a few minutes of adaptation data.
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2.4 SPEECH SYNTHESIS IN INDIAN CONTEXT : AN OVERVIEW

Speech forms the foundational means of communication between humans. The rapid

development in technology has facilitated human-computer interaction through voice in

addition to human-human interaction. The process of converting a given text into audio

is known as text-to-speech synthesis (TTS). TTS domain has made remarkable progress

in recent years. With the advent of deep learning technologies and huge computational

resources, TTS has achieved intelligibility and quality equivalent to humans. However,

the development in this field was initiated with the fundamental speech synthesis

techniques like Unit Selection Synthesis (USS) (Hunt and Black, 1996) and Hidden

Markov model speech synthesis system (HTS) (Tokuda et al., 2002). Further, HTS or

USS in combination with neural networks was attempted (Ze et al., 2013). Finally, End-

to-End (E2E) systems (Wang et al., 2017) came into existence, which is the backbone

for the current state-of-the-art text-to-speech synthesis.

The primary speech synthesis systems are - USS, HTS, and E2E. In USS, the

segmented and labeled waveforms of the basic units are stored in a database. The

labeling is done at the syllable, Akshara, and phone levels. During synthesis, the most

similar unit from the database is selected using the target, and the concatenation costs

(Hunt and Black, 1996). In HTS, the acoustics and durations are modeled separately.

The spectral and excitation parameters are used in acoustics to train context-dependent

phone models (Tokuda et al., 2002). This statistical model estimated the parameters

based on the data distribution. The explicit acoustic and durational modeling is replaced

in the end-to-end framework, which takes text and audio as input and generates speech.

Building speech synthesizers in the Indian context is challenging because Indian

languages are digitally low-resourced. India has a wide language diversity with 22

official languages, including English. The lack of accurate transcription and phone-level

alignment for each Indian language makes it more difficult to build speech synthesizers.

Even within Indian languages, there are two languages families, namely Indo-Aryan

and Dravidian. The phonotactics of the two families are different, which has to

be taken into account during building synthesizers for Indian languages. A unified

approach for parsing text in Indian languages has been proposed by Baby et al. (2016a).
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Semi-automatic and automated techniques for correcting word boundaries have been

proposed by Shanmugam (2015). Signal processing cues in tandem with deep learning

techniques have been tried by Baby et al. (2017) for obtaining accurate phone-level

boundaries. Transcription correction for Indian languages using acoustics has been

performed by Prakash et al. (2018). A unified parser was developed by Baby et al.

(2016a) to parse Indian language text, and a common representation known as Common

Label Set (CLS) (Ramani et al., 2013) was developed for Indian languages to handle

multi-lingual texts. Thomas et al. (2018) attempts to develop code-switched TTS for

Indian languages. Further, attempts to build generic voices and adapt to low-resource

languages have also been attempted by Prakash and Murthy (2020).

2.5 PARADIGMS USED IN THE THESIS

State-of-the-art voice conversion techniques such CycleGAN (Kaneko and Kameoka,

2018) and StarGAN (Kameoka et al., 2018) were attempted using the conversational

speech dataset. However, the results did not seem very promising. To achieve our

objective of generating the target speaker’s voice in Indian languages in a low resource

scenario, we have extended the idea of speaker adaptation proposed by Prakash and

Murthy (2020). We have focussed on a unified parser developed by Baby et al. (2016a)

and a common label set proposed by Ramani et al. (2013) for handling multilingual

text. Since we are dealing with classroom lectures, which are conversational speech,

the problem becomes more interesting and challenging.

2.6 SUMMARY

This chapter provided an overview of the literature on conversational speech, voice

conversion and adaptation, and Indian language speech synthesis. We also discussed

strategies for speech recognition for conversational speech. While ASR has been

successful, synthesis of speech with characteristics of conversational speech is difficult.

There has been only a little related work in building purely conversation TTS owing to

the lack of conversational datasets. Speech synthesis using conversational speech data

is indeed challenging. We also discuss the different voice conversion and adaptation
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techniques. Further, speech synthesis in the Indian context has been discussed to

facilitate the extension of the existing techniques to map English and Indian languages

to a common representation.
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CHAPTER 3

ANALYSIS OF CONVERSATIONAL SPEECH

3.1 INTRODUCTION

This chapter deals with three aspects — creating a conversational speech dataset,

performing a comparative analysis between read speech and conversational speech, and

building a conversational speech synthesis model using lecture data. Read speech is

the speech recorded by pronouncing a written text directly. It is always semantically

correct since it is scripted. The speaking rate of the speaker is maintained more

or less constant. It is less expressive. Unlike read speech, conversational speech

is spontaneous and prosodically rich (Batliner et al., 1995). It is an impromptu

speech and may or may not be semantically correct. Conversational speech captures

typical speaker mannerisms, which lead to disfluencies. Due to all these distinctive

factors in conversational speech, an in-depth analysis is performed for read speech and

conversational speech datasets. First, a conversational speech dataset is created using

classroom lecture data from different speakers, as discussed in Section 3.2. This is

vital as there is no standard multispeaker conversational speech dataset from classroom

lectures. A comparative analysis is performed in Section 3.3 between read speech and

conversational speech in terms of syllable rate variation, pitch variation, and Signal-to-

Noise Ratio (SNR). Further, typical issues in spontaneous speech such as disfluencies

and errors in transcription are highlighted in Section 3.3.5 and 3.4 respectively. An

attempt is made to use data pruning techniques to build a robust speech synthesis

model using the classroom lecture data in Section 3.5.1. This conversational model

is compared with that of a read speech model.

3.2 DATASET DESCRIPTION

Two different datasets have been considered for the analysis and experiments.



3.2.1 Read Speech

For read speech, we have considered a subset of IndicTTS corpus (Baby et al., 2016b)

comprising 13 Indian languages in Native (vernacular) and Indian English for both male

and female voices. Waveforms and the corresponding texts are available. The audio is

sampled at 48KHz. The speakers from this dataset are abbreviated as RM1, RF1, and

so on, where R indicates read speech, M/F indicates the gender of the speaker and 1

represents the first speaker, and so on. The details of the subset of data used for each

task will be discussed in each section.

3.2.2 Conversational Speech

Online educational lectures from National Programme On Technology Enhanced

Learning (NPTEL) have been considered for creating a conversational speech dataset.

NPTEL is an online educational platform (https://nptel.ac.in/) which has more than

56000 hours of subtitled videos initiated by seven Indian Institutes of Technology

and the Indian Institute of Science, Bangalore, in 2003. It is funded by the

Ministry of Education (MoE) Government of India. Courses from five Engineering

disciplines, namely, civil, computer science, electrical, electronics and communication,

and mechanical, as well as Humanities, are offered annually for undergraduate and

postgraduate students. Although NPTEL currently offers courses in a few Indian

languages, most of the lectures are available in English. Hence we have considered

only English videos for our work.

Owning to the lack of open-source conversational speech datasets, we have

created our own dataset for this work. Lecture videos are selected from different

domains of NPTEL courses. The complete audio of each lecture is extracted from

the corresponding video and converted to mono recording from stereo. The audios are

passed through a voice activity detector and speech recognizer provided by Speech Lab

IITM (https://asr.iitm.ac.in/NPTEL/Transcribe/). This generates a SubRip Text(SRT)

file. The SRT file contains the start and end timestamps of speech regions and the

corresponding transcriptions generated by ASR. The lecture audios are segmented

using the timestamps in the SRT file. With this process, we collected 158.5 hours
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of classroom lectures dataset consisting of 21 speakers. The speakers from this dataset

are abbreviated as CM1, CF1, and so on, where C indicates conversational, and M and

F indicate male and female, respectively. The complete details of this created dataset

are given in Appendix A. The dataset will be made available for research purposes on

request.

3.3 COMPARATIVE STUDY OF READ SPEECH AND CONVERSATIONAL

SPEECH

A comparative study between read-speech denoted as RM1, RM2,....,RF1, RF2,etc.

and conversational speech datasets CM1, CM2, ..., CF1, CF2 etc. is performed. Speech

parameters such as syllable rate, pitch, and signal-to-noise ratio have been considered

for comparison. The details of the dataset used for this analysis task are given in Table

3.1.

Table 3.1: Details of dataset considered for the analysis task

Read Speech Conversational Speech
Speaker Nativity Duration (in hours) Speaker Domain Duration (in hours)

RM1 Hindi 1/2 (English) CM1 Computer Science 1/2 (English)
RM2 Kannada 1/2 (English) CM2 Computer Science 1/2 (English)
RM3 Malayalam 1/2 (English) CM3 Mathematics 1/2 (English)
RM4 Rajasthani 1/2 (English) CM4 Physics 1/2 (English)
RM5 Marathi 1/2 (English) CM5 Humanities 1/2 (English)
RF1 Hindi 1/2 (English) CF1 Electrical 1/2 (English)
RF2 Tamil 1/2 (English) CF2 Humanities 1/2 (English)
RF3 Kannada 1/2 (English) CF3 Humanities 1/2 (English)
RF4 Malayalam 1/2 (English) CF4 Mechanical 1/2 (English)
RF5 Marathi 1/2 (English) CF5 Humanities 1/2 (English)

3.3.1 Syllable Rate

Syllables are the fundamental units of speech of the form C*VC*, where V represents

a vowel and C* represents optional, one, or more consonants. A syllable is composed

of three parts - onset, nucleus, and coda (Bartlett et al., 2009), where the onset and

coda correspond to consonants with a vowel at the nucleus. Vowels have long duration

and high energy, whereas consonants with low energy form the syllable boundaries.

Syllable boundaries can be detected using short-term energy (STE). STE of a speech

signal x[n] is computed as :
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Fig. 3.1: Waveform along with short term energy (STE) and group delay (GD)
boundaries

E[n] =
∑M−1

m=0 (x[m].w[n−m])2

where n denotes the current sample, w[n] is the window function and M indicates the

frame width.

STE suffers from local energy fluctuations, making syllable boundary detection

difficult. Hence, group delay (GD) processing is employed in tandem with STE to

obtain a smooth envelope (Prasad et al., 2004). A waveform along with the STE

and the GD boundaries are shown in Figure 3.1. The peaks of GD correspond to

syllable boundaries. Vowels have a long duration and high energy. Syllable boundaries

are obtained in a text agnostic way directly from the audios. Once the boundaries

are obtained, the syllable rate is computed. The syllable rate estimates the number

of syllables uttered per second, considering only the inter-silence regions. Constant

syllable rate across all the utterances is essential for modeling the basic sound units

while building text-to-speech synthesis models. In the absence of a constant syllable

rate, the quality of text-to-speech(TTS) synthesis output becomes inconsistent.

We manually analyze a few utterances from each dataset to perform a

comparative study of the syllable rate of read speech and conversational speech. A

waveform along with the spectrogram depicting the syllable boundaries is shown in

Figure 3.2 for conversational speech and Figure 3.3 for read speech. Since parallel

data is not available across read-speech and conversational speech datasets, different

utterances have been considered for the analysis task. The syllables are marked as s1,

s2, and so on for each of the utterances. In Figure 3.3 which is an utterance from read-

speech, we clearly see that the duration of each syllable s1 to s7 is more or less the same.
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Fig. 3.2: Syllable boundaries for an utterance from conversational speech

Fig. 3.3: Syllable boundaries for an utterance from read speech

Whereas in Figure 3.2, which is an utterance from conversational speech, the duration

of s1 and s7 is quite high compared to the duration of s5 and s8. This indicates the fact

that varying syllable rates are an inherent characteristic of conversational speech.

To validate that higher fluctuations in syllable rate occur during conversations,

we compute the syllable rates for about 300 utterances of read speech and 300 utterances

of conversational speech across different lectures. Figure 3.4 depicts the histograms of

syllable rate across multiple utterances of two speakers (RM1, RF1) from read speech

and two speakers (CM1, CF1) from conversational speech datasets. As seen from
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Fig. 3.4: Syllable rate variation between read-speech and conversational speech

Figure 3.4, there is a significant fluctuation in the syllable rate across the utterances

obtained from classroom lectures (depicted using green colour). As a result, the

variance is higher. In contrast, the syllable rate remains comparatively constant for read

speech (depicted using maroon colour). A similar trend is seen in the case of both male

and female datasets. Although the two speakers are different and one is read speech

and another is conversational speech, there is a certain range of syllable rate common in

both speech. The third colour (dark maroon) indicates the overlapping range of syllable

rate between the read speech and conversational speech utterances.

The syllable rate is also speaker-dependent to some extent. Hence, to generalize

the findings, the syllable rate is computed across ten speakers ( 5 male, 5 female) each

of read speech and conversational speech using the dataset stated in Table 3.1. The

average syllable rate and the standard deviation are presented in Table 3.2. It is evident

that although the mean syllable rate is almost the same for all the speakers, there is a

higher syllable rate variance in the case of conversational speech speakers compared to

read-speech speakers.

3.3.2 Pitch

The speech production mechanism can be modeled as a source filter model. The vocal

cord vibration generates a train of impulses for voiced signals (Figure 3.5). This forms

the source, and the vocal tract shape forms the filter. The fundamental frequency of

vibration of the vocal cords is known as pitch.
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Table 3.2: Mean and standard deviation(SD) of syllable rate for different speakers

Read Speech Conversational Speech

Speaker Mean
syllable rate

SD of
syllable rate Speaker Mean

syllable rate
SD of

syllable rate
RM1 6.38 1.00 CM1 6.32 1.36
RM2 6.04 1.04 CM2 6.31 1.47
RM3 6.35 1.09 CM3 6.15 1.26
RM4 6.29 1.13 CM4 6.15 1.35
RM5 6.20 1.13 CM5 6.19 1.34
RF1 6.50 1.05 CF1 6.79 1.73
RF2 6.73 1.28 CF2 6.37 1.32
RF3 6.65 1.04 CF3 6.57 1.19
RF4 6.42 1.08 CF4 6.57 1.32
RF5 6.46 1.14 CF5 6.51 1.38

Fig. 3.5: Source-filter model of speech production

Pitch is one of the most critical parameters in speech technology. For any voice

manipulation task, modeling the pitch is essential to produce the target voice. Pitch

contours help to modify prosodic features and the speaker’s intonation. Several analyses

have been carried out in the literature for expressive speech (Deo and Deshpande, 2014).

On closely observing the pitch contours of one utterance from each read speech

and conversational speech data in Figure 3.6, it is visible that the pitch contours change

abruptly even within a single utterance in the case of conversational speech. Even
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Fig. 3.6: Waveform showing pitch fluctuations in a single utterance of conversational-
speech(A) and read speech(B)

at the end of the sentence, where we ideally expect the pitch to become flat, there

is a high pitch fluctuation in case A in Figure 3.6. In the second case, i.e., for

read speech utterance, the pitch transitions are almost smooth and continuous. The

discontinuities and sudden pitch fluctuations in the former result from the expressive

nature of conversational speech. Pitch variations are expected in conversational speech

to deliver emotions and expressions. During a class lecture, the professor is bound to

make prosodic variations to emphasize specific points, which leads to pitch variations.

Although prosodic modulations and intonations make conversations more interactive,

it adds to the difficulty of building a TTS model using this data. The model struggles

to learn the pitch modulations, which may result in pitch variations at random places.

Further, we compare the pitch histograms across multiple utterances of read speech and

conversational speech of different speakers by plotting the pitch values from the speech

regions. From Figure 3.7, it is observed that lecture data (shown in blue) have a wide

variation in pitch due to high pitch fluctuations and prosodic variations compared to read

speech (shown in orange), even for multiple utterances. The brown region indicates the

overlapping range of pitch between read speech and conversational speech utterances.

Since the pitch is an essential parameter in speech, the broad pitch range in the case

of conversational speech takes a toll on the intelligibility and speaker characteristics of

the TTS model. To quantify the findings, the pitch is computed across ten speakers (5
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Fig. 3.7: Pitch variation between read-speech and conversational-speech

Table 3.3: Mean and standard deviation (SD) of pitch for different speakers

Read Speech Conversational Speech

Speaker Mean
pitch

SD of
pitch Speaker Mean

pitch
SD of
pitch

RM1 114.78 24.30 CM1 159.42 37.19
RM2 119.81 35.55 CM2 149.22 44.28
RM3 134.39 20.90 CM3 154.10 38.19
RM4 113.37 24.46 CM4 144.03 45.45
RM5 117.55 19.55 CM5 159.03 47.15
RF1 191.23 34.05 CF1 219.18 48.92
RF2 204.03 44.33 CF2 222.82 52.52
RF3 230.14 56.20 CF3 181.82 41.18
RF4 216.16 50.13 CF4 246.10 46.61
RF5 231.94 46.91 CF5 201.23 53.92

male, 5 female), each of read speech and conversational speech. The average pitch and

the standard deviation are presented in Table 3.3. For the majority of the cases, the

trend, i.e., high variance of pitch for conversational speech speakers, is observed when

compared to read speech speakers.

3.3.3 Signal to Noise Ratio

Evolving from the fundamentals of digital signal processing, speech is a form of signal.

The quality of the signal is highly influenced by the recording conditions, background

noise, recording devices, etc. A higher SNR ratio indicates that the signal power is

more, whereas a lower SNR ratio indicates that the noise is more. As mentioned

in Section 3.2, the read speech data has been recorded in a studio environment and
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carefully curated. Although the conversational speech data from NPTEL are also

studio-recorded, other factors like the microphone used during recording, background

noise, classroom noise, etc., come into consideration. SNR is the ratio between the

signal power and the noise power. SNR is usually expressed in decibel (dB) and is

computed as :

SNRdB = 10log10
P (signal)
P (noise)

In Figure 3.8, we plot the spectrograms of one single utterance of read speech

and one utterance of conversational speech. The lecture data in Figure 3.8 has more

high-frequency components, indicating noise compared to the read speech utterance.

Conversational Speech

Read Speech

Fig. 3.8: Spectrogram comparing one utterance of conversational speech (up) read
speech(down)

Further, we compute the SNR values across ten speakers (5 male, 5 female)

each of read speech and conversational speech. The SNR is computed using SNR

estimation on Waveform Amplitude Distribution Analysis (WADA) as stated by Kim

and Stern (2008). It is assumed that the noise and speech signals are not intertwined.

Clean speech forms a gamma distribution, whereas the background noise composes a

Gaussian distribution. Based on this assumption, the SNR values are computed. An

SNR value greater than 20dB is considered to be clean speech; hence we compute the

percentage of data that has an SNR value less than 20dB. The average SNR is also

shown in Table 3.4. It is clearly evident that for all read speech speakers, the SNR value

is very high, and hence the data is very clean. In contrast to this, the conversational
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speech data has some percentage of noisy utterances even though the mean SNR appears

to be greater than 20dB. These noisy utterances may account for degradation in the TTS

quality if this data is used for building speech synthesizers.

Table 3.4: SNR values for different speakers

Read Speech Conversational Speech

Speakers Mean
SNR

% less than
20 dB Speaker Mean

SNR
% less than

20 dB
RM1 100 0 CM1 73.16 4.31
RM2 100 0 CM2 44.71 4.19
RM3 100 0 CM3 68.72 6.08
RM4 100 0 CM4 32.04 33.7
RM5 97.77 0.51 CM5 39.14 10.89
RF1 100 0 CF1 42.36 0.28
RF2 84.89 0 CF2 40.32 11.48
RF3 100 0 CF3 70.79 0
RF4 100 0 CF4 32.48 6.68
RF5 100 0 CF5 29.76 11.43

3.3.4 Feature Space for Read Speech and Conversational Speech

As evident from the above discussions, we understand that pitch, syllable rate, and

SNR are essential parameters for distinguishing between read speech and conversational

speech. Here, we attempt to find a feature space where the two (read and conversational)

groups of speakers are distinctly separated. We have considered the dataset as given in

Table 3.1 for this task. We observe that the pitch deviation and the syllable rate deviation

are higher for conversational speech; hence we consider the deviation instead of the

mean values. We plot syllable rate deviation vs. SNR in Figure 3.9, pitch variation vs.

SNR in Figure 3.10, and syllable rate deviation vs. pitch variation in Figure 3.11 for ten

speakers. The blue colour is used to represent read speech speakers, and the red colour

is used to represent conversational speech speakers. To distinguish between genders,

an inverted triangle is used for males, and a circle is used for females. Read speech

and conversational speech speakers are well-separated in a space formed by syllable

rate deviation vs. SNR, as shown in Figure 3.9. SNR and syllable rate deviation are

uncorrelated features. The blue points (read speech) have a lower standard deviation

25



Fig. 3.9: Speakers’ representation in syllable rate deviation vs SNR space

of syllable rate and a higher SNR value, clearly forming a distinct cluster. Similarly,

the conversational speech speakers create another distinct cluster almost closely spaced,

and a linear decision boundary can be observed separating the two groups of speakers.

Even though the gender is different, we observe that read speech speakers are very

closely spaced, indicating the underlying similarities in their attributes.

Fig. 3.10: SNR of Speakers’ and corresponding pitch variation

In Figure 3.10, the read and conversational speakers form separate clusters even

considering pitch variation vs. SNR. The blue points (read speech) have a higher value

of SNR. It is noteworthy that the pitch variation for male data is less compared to

female data for both read and conversational speech, as seen in the plots. However,
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generalization in pitch deviation for read and conversational speech cannot be made

distinctly because it also depends on other factors like voice timbre and prosody of the

particular speaker. This could also be because of recording environments or errors in

the pitch extraction algorithm. A linear decision boundary can still be considered to

separate the speakers of these two groups.

Fig. 3.11: Syllable rate deviation vs. pitch variation

Similarly, in Figure 3.11, we observe two clusters - one for read and one for

conversational speakers. The syllable rate deviation mainly impacts the separation, and

the decision boundary segregates the two into different groups with just one outlier.

This demonstrates that considering the uncorrelated feature spaces already discussed,

we can classify speech as read speech and conversational speech.

3.3.5 Disfluencies

Disfluencies are unavoidable characteristics in spontaneous speech. Classroom lectures

are unscripted; hence lots of disfluencies like umm, ah, okay, so, right, is it, etc.,

such filler words occur during a lecture. False starts can also occur while delivering

a lecture, along with these filler words. This makes it difficult for the ASR language

model to make correct transcript predictions. The language model is mostly trained on

clean text, not conversational. So disfluency detection, as well as removal, becomes

challenging. The error in transcription prediction may lead to a mismatch between
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Table 3.5: Percentage of disfluencies in 30 mins lecture audio (conversational speech)

Speaker No. of disfluencies Total no. of words Disfluency rate
CF1 194 4750 4.08%
CM1 162 4920 3.29%

the audio and corresponding transcriptions. Automatic disfluency detection is more

difficult because certain words like okay, so, right, etc., can occur even as a part of the

text. Figure 3.12 illustrates an example of a speech segment with the disfluencies Ok

and Ah captured during a lecture. It is noteworthy that the duration of Ah, being a filler

word, is very long. As a result, the syllable rate of utterances having such filler words is

less since the disfluent vowel is elongated. This in turn might affect the performance of

the TTS model trained using this data. Due to the manual effort involved in disfluency

Fig. 3.12: Disfluencies “Ok” and “Ah” in a lecture segment

identification, analysis is performed on one male (CM1) and one female (CF1) lecturer

for conversational speech. About 30 minutes of the course is considered for analysis.

Disfluency rate is defined as the ratio between the number of disfluent words to the total

number of words. As seen from Table 3.5, the average disfluency rate of conversational

speakers is about 4%. There are no disfluencies in read speech because the recordings

are rehearsed and scripted.

3.4 ISSUES IN ASR

One of the major challenges in conversational speech is the lack of transcriptions for the

audio. Getting accurate manual transcription is costly. So we depend on ASR models

to generate the text. The current state-of-the-art ASR models, which have already
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achieved a very low word error rate for read speech (Baevski et al., 2020), struggle

when the data is conversational. For our work, an ASR trained in technical domains

is used for transcribing lecture videos. The issues in the ASR prediction result in a

mismatch in the audio-transcription pairs, thereby making the TTS training furthermore

difficult. Figure 3.13 presents the most commonly occurring errors in ASR. The system-

generated outputs are marked in red, and the expected transcriptions are marked in

blue. The most commonly encountered issue during manual correction of transcription

Fig. 3.13: Types of issues encountered in ASR transcriptions

is due to Type 1 (Figure 3.13). These errors can occur due to mispronunciation and

accents typical to a particular speaker. Type 4 is due to Out-of-Vocabulary (OOV)

words since the proper nouns may not be seen during the ASR training phase. Added to

this, domain-specific technical terms might occur during the decoding time. As a result,

the ASR predicts a similar word as seen during training. A key point to note here is that

these technical lectures are conversational in nature and therefore do not follow sentence

structures and have disfluencies. These result in issues of Types 2 and 3, as shown in

Figure 3.13 which occur due to false starts. Technical lectures are bound to have a
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lot of mathematical symbols, equations, and abbreviations. Handling the symbols and

equations consistently throughout the lecture becomes difficult for the ASR. As shown

in the Type 5 issue, ‘T’ is getting confused with ‘the’. Hence it is very crucial to devise

techniques to prune utterances that exactly match the transcription before training any

TTS model to reduce this mismatch.

3.5 TTS USING CONVERSATIONAL SPEECH : CLASSROOM LECTURES

After understanding the fundamental differences between read speech and

conversational speech, we attempt to build a text-to-speech synthesis model using the

lecture recordings and compare it with that of a read speech model. The details of data

used for training the read speech and conversational speech models are given in Table

3.6.

Table 3.6: Details of data used for building character based end-to-end systems

Read Speech Conversational Speech
Speaker Nativity Duration (in Hrs) Speaker Domain Duration (in Hrs)

RF6 Bengali 8.5 (English) CF6 Computer Science 39.6 (English)

We understand that the task of building a conversational TTS is very challenging

as there are multiple issues. The audios have variable syllable rate, pitch, and SNR,

as discussed in Section 3.3. Further, the <text, audio> pairs are not 100% accurate

since they are machine-generated and not manually curated. Also, there is a lack of any

other curated conversational data which can be leveraged to bootstrap the TTS model.

To overcome the shortcomings in conversational speech, we propose a pruning module

and attempt to bring the conversational data close to that of read speech data.

3.5.1 Pruning Module

Figure 3.14 shows an overview of the pruning module. The audios are pruned using

parameters such as syllable rate and alignments, and denoised. The set of curated audios

is used for building an E2E conversational TTS model. For syllable rate and SNR

computation, only audios are needed, whereas for alignments, the audios, as well as

the corresponding text, are needed. Pitch has not been considered as a parameter for
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Fig. 3.14: Block diagram of pruning module

pruning because the prosody and the expressive nature, in the case of conversational

speech, are due to these pitch transitions. As our objective is to build models which

are more natural, we do not discard utterances with high pitch variation. Here, we have

used the data of the speaker represented as CF6 in Table 3.6. Each of the pruning steps

is discussed below:

Syllable-rate

In Section 3.3.1, we discussed the method of computing the syllable rate of each

utterance. The mean and SD of the syllable rate of all the utterances are computed. The

mean is found to be 7.17, and the SD is found to be 2.41. To avoid utterances having

very high or very low syllable rates, we set a threshold of ± 1SD, and we discard the

utterances which do not lie within the threshold. The new mean and SD are found to

be 6.91 and 1.46, respectively. The syllable rate distribution before and after pruning is

shown in Figure 3.15. Since disfluent utterances might result in a low syllable rate, the

assumption is that the disfluent utterances also get pruned during this stage.

Alignments

As discussed in Section 3.2, the transcriptions of the lectures are obtained from ASR

models. Hence, they might have insertion, deletion, or substitution errors. So, a word-
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Fig. 3.15: Syllable rate distribution modelled as a Gaussian before and after pruning

level alignment check is performed as a part of the pruning stages to ensure that the

utterances to be used for building the conversational TTS model are error-free as far

as possible. Kaldi framework (Povey et al., 2011) has been used to check the word

level alignments of the lecture data. A monophonic model is trained using about 50

hours of the conversational speech data of multiple speakers combined together, as

stated in Table 3.1 and Table 3.6. The high amount of training data compensates

for the minor mismatch in the audio-transcription pairs, and the monophonic models

become robust. The training data of speaker CF6 (Table 3.6) is further decoded back

using these monophonic models. It is noticed that for a few utterances, the word-level

alignments are not generated. This is because if a word is missing either in the audio or

in the transcription, the text-audio pair cannot be aligned. This indicates the mismatch

between the audio transcription pairs. The utterances for which the alignments are not

obtained are discarded at this stage. Additional data of different speakers have been seen

to improve the performance of the alignment accuracies. This alignment step ensures

that utterances with word skips or undetected disfluencies are discarded.
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Before denoising

After denoising

Fig. 3.16: Spectrogram and waveform showing an audio before and after denoising

SNR distribution before denoising SNR distribution after denoising

Fig. 3.17: SNR distribution before and after pruning for one speaker

Denoising

As discussed previously, the recorded lecture data have some noise. The SNR for the

data is computed using WADA SNR (Kim and Stern, 2008) as stated in Section 3.3.3.

In Figure 3.17, we observe that majority of the utterances lie in the range of SNR less
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than 20dB. On discarding these utterances, we would not be left with enough data for

building a TTS model. Hence, we attempt to denoise the audio using the noisereduce

PyPi package (Sainburg, 2019; Sainburg et al., 2020). The package uses the spectral-

gating method to estimate the noise threshold from the spectrogram of the audio and

denoises the audio.

Figure 3.16 shows one utterance before and after denoising. We observe that we

lose out on some information in this process of noise removal. But still, the silence

regions are captured in a better way, as marked in Figure 3.16. In the presence of noise,

we were unable to train a TTS model for conversational speech. The SNR distribution

before and after noise removal for speaker CF6 is shown in Figure 3.17.

3.5.2 System Building

The TTS systems discussed further are trained using End-to-End architecture. ESPnet’s

implementation (Watanabe et al., 2018) of Tacotron2 (Shen et al., 2018) is used for

this task. Tacotron2 employs an attention mechanism in its encoder-decoder design.

The audios greater than 15 seconds are discarded to help the model learn the attention

more robustly. For training, just text-audio pairs are required. The set of English

characters, along with a <unk> token for unknown characters, <space> token for

space, <sos/eos> token for sentence beginning or end, and <blank> token for blanks,

comprises the dictionary. A character-based model was trained using a dictionary size

of 30. This set of characters is mapped into distinct tokens. The encoder model receives

these tokens and converts them into fixed-length vectors, which are also known as

character embeddings. The decoder receives the character embeddings and predicts

the Mel-spectrogram for each frame. The Tacotron-2 architecture takes the text and

the audio spectrograms as input. Raw audio spectrograms are used as input since they

provide rich information about the acoustics and the intensity of the spoken utterances.

Spectrograms are considered over a short window since speech signals are assumed to

be quasi-stationary. The basic overview of training and synthesis using an End-to-End

framework is shown in Figure 3.18. The raw spectrograms are converted back into

audio waveforms using a vocoder. Waveglow (Prenger et al., 2019) is the vocoder in

our case. It takes mel-spectrograms as input and generates back the audio. Only the
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Fig. 3.18: Block diagram of End-to-End training and synthesis modules

mel-spectrograms extracted from raw audios are needed for the training of waveglow.

The pre-trained LJSpeech (Ito and Johnson, 2017) waveglow model is used as an initial

model and finetuned using the speaker’s data. The synthesis pipeline has two tasks :

Spectrogram generation and vocoder. We do not make any modification to the vocoder

during synthesis.

To perform a comparative study between read speech and conversational speech

TTS, two models are trained. The read speech model (System 2) is trained using English

data of speaker RF6 as given in Table 3.6. An attempt was made to train a conversational

speech model by pooling lecture data of CF6 as stated in Table 3.6 without pruning.

However, the model was not intelligible at all. Hence, the pruning module was

introduced to make the conversational data (lecture data) similar to read speech data

to be used for building TTS. The <text, audio> pairs obtained from the pruning module

are assumed to be suitable for building a conversational TTS model. This data is from

the same conversational speaker, CF6. Data of about 18 hours obtained after pruning

was used to train System 1. The block diagrams of the two systems trained in this

section are shown in Figure 3.19. As seen from the figure, System1 (conversational
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TTS) has the pruning module because the data is from classroom lectures which are

essentially conversational. System2 (Read speech) does not need the pruning module

since it is read speech data that is rehearsed/ read out at a constant speaking rate.

Fig. 3.19: TTS Systems

Evaluation

After introducing the pruning module, the conversational TTS System1 could generate

a few intelligible utterances. However, still, the model was not equivalent to read

speech TTS and had issues with respect to word clarity and mistakes. Out of a total

of 1635 unseen test sentences, 23 utterances were not very intelligible. For evaluation

of the conversational TTS system (System 1), pairwise comparison (PC) test and

degraded mean opinion score (DMOS) (Viswanathan and Viswanathan, 2005) test have

been performed. Only intelligible audios from System1 were evaluated and compared

with System2. Since ASR errors like insertions, deletions, and substitutions still persist

in System 1, we further performed a word error rate (WER) computation. The sample

audios are present in the link (https://www.iitm.ac.in/donlab/preview/test/index.html)
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System1 (Conversational TTS)

System2 (Read speech TTS) 

Both

Fig. 3.20: Result of pairwise-comparison test for System1 and System2

PC test: In the Pairwise Comparison test, two audios (one from each system)

are played to the evaluators in each trial. The order of the systems is shuffled in each

test case to prevent bias. The evaluators are asked to rate their preference for the

audio based on intelligibility and naturalness. It was very difficult for the evaluators to

perceive naturalness and intelligibility separately and give a rating; hence both of the

tests were combined together for evaluation. The ratings are performed on a scale of

1-5 (5 being the best). If both audios are preferred equally, an equal rating is given. PC

test is performed here to identify the preference of listeners between TTSes trained on

read speech and conversational speech. Ten unseen test transcriptions from lectures

have been chosen and synthesized using both systems. Fifteen evaluators participated

in the test. Figure 3.20 shows the results of the PC test. It is seen that System 1, i.e.,

the conversational TTS, was preferred 38% of the times while System 2, i.e., the read

speech system, was preferred 48.7% of the times and 13.3% times both the systems

were rated equally. Informal evaluations suggested that multiple factors influenced a

person’s preference. Since both the speakers are different, the preference of one over

the other could be due to the voice timbre, intelligibility, or naturalness. In a few cases,

the naturalness was more in the case of System 1, whereas intelligibility was more in

System 2. System 1 sounded more natural because of the typical speaker mannerisms

and prosodic variations, which were not present in the case of read speech. However, it

took a toll on the system intelligibility in a few cases.
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DMOS test: Degraded Mean Opinion Score (DMOS) (Viswanathan and Viswanathan,

2005) is a popular technique for evaluating speech synthesis quality. In the DMOS test,

the synthesized utterances from each system are presented to each listener along with

a few natural sentences in random order. Each listener is asked to rate speech quality

based on naturalness and intelligibility, with 5 as the most natural-sounding utterance

and 1 as the least. A precision of 0.5 is allowed, and the framework is set such that

no rating is allowed until the entire utterance is played. The score for each system is

normalized with respect to the score obtained by the natural sentences. The DMOS for

each system for one listener is computed as :

DMOS(System) = AverageScore(System)
AverageScore(Natural)

Finally, the DMOS score of each system is computed by taking the mean rating given

by all the listeners for that particular system.

The read speech TTS (System2) has only been included for the PC test since

DMOS for read speech has already achieved quality equivalent to natural speech. For

System 1, the DMOS score is given in Table 3.7. Although the DMOS score is less

than that of read speech TTS systems, the results are still encouraging as it shows that

building a completely conversational system using classroom lectures is possible using

data pruning techniques. The results can be improved by identifying more sophisticated

techniques for data curation as well as improved ASR.

Table 3.7: DMOS score for conversational TTS

System DMOS Score
System1 (Conversational TTS) 3.37

WER test: An arbitrary set of 20 sentences synthesized using System 1 was informally

evaluated to find the number of insertion, deletion, and substitution errors, and the result

is shown in Table 3.8. The Word Error rate (WER) test was not performed for read

speech because the WER was close to 0. We observe that conversational speech TTS has

word skips, substitutions, and insertions even after pruning the data used for training.
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The reason might be due to the unstructured and incomplete sentences seen during

training of the system.

Table 3.8: Number of insertions, deletions and substitutions

Total no. of words No. of insertions No. of deletions No. of substitutions
318 4 38 16

3.6 SUMMARY

This chapter overviewed the underlying differences between read-out transcriptions and

spontaneous lectures. The factors like syllable rate variation, pitch variations, signal to

noise ratio, which are responsible for differentiating conversational speech from read-

speech, were identified, and a comparative study was made between different speakers

from each of the two groups. Such an exhaustive study is critical to analyze, understand

and give future research direction using spontaneous speech.

Factors like disfluencies and ASR transcription errors were indicated, adding to

the difficulty due to the lack of manually curated transcripts. Due to the enormous

manual effort involved in curating the lecture data, a data engineering approach of

pruning was identified and applied. A preliminary attempt was made to build TTS

models using this pruned classroom lecture data, which is an extremely challenging

task and first of its kind. Evaluations and comparisons with TTS trained on read speech

were performed. The results indicate that conversational data preserve the naturalness

and sound more interactive compared to read speech TTS. However, the model output

is not very intelligible in some instances due to the variability in context, as the training

sentences may not be complete and meaningful. There are scopes of improvement in

conversational TTS; it is not at par with read speech systems in terms of intelligibility.

But, the analysis and results are encouraging as it paves the way for exploration towards

conversational TTS, voice adaptation, speaker identification, and much more using

conversational data.
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CHAPTER 4

CROSS-LINGUAL SPEAKER ADAPTATION

4.1 INTRODUCTION

Chapter 3 discussed the challenges in building a text-to-speech (TTS) synthesis model

using conversational classroom lecture data. The conversational speech system is

trained using the lecturer’s data using data pruning techniques. However, our ultimate

objective is to generate the professor’s voice in a target Indian language. The

conversational system discussed in Chapter 3 has the speaker’s voice characteristics but

is trained only in English; hence cannot synthesize text in any other Indian language.

Another obstacle is that we do not have any Indian language conversational speech

dataset, which limits exploration in this field. Added to the data sparse situation, the

data is conversational, making it very difficult to build robust TTS models. To overcome

the data limitations, we propose to adapt read speech models using a minimum amount

of conversational speech to generate the target speaker’s voice in a target language.

The proposed approach follows the work by Prakash and Murthy (2020) where a

generic TTS model is built by pooling multiple Indian languages and adapted to a target

language. A generic model can capture a wide range of acoustics, can be scaled up in a

low resource scenario, and is computationally inexpensive. The paper states that target

speaker characteristics are preserved even with as less as seven minutes of adaptation

data. The work focuses on building generic TTSes for Indo-Aryan (Hindi, Bengali,

Rajasthani, etc.) and Dravidian (Tamil, Kannada, Telugu, etc.) languages separately

as the language families have distinguishing characteristics. However, the work is

primarily done on read speech and Indian languages. Adaptation between Indian

languages and English, which are phonotactically very different, has not been attempted

previously. Further, using conversational speech to adapt read speech systems within

languages with a significant difference in phonotactics to impart speaker characteristics

is a more ambitious objective.

The idea is to use read speech to build a robust base model in an Indian language.

To account for the phonotactic variations between English and Indian languages, an



equal amount of English data of the same read speech speaker is used, and a bilingual

(English + Indian language) model is trained. Using read speech data for the base

model is inspired by the fact that read speech data is present for multiple Indian

languages as opposed to conversational data, which is present only in English. Hence,

the objective of speaker adaptation can be scaled across various Indian languages.

There is no mismatch in the audio-transcript correspondence in read speech, so the

base model can be trained without any issue. In the case of conversational speech, the

transcripts are ASR generated, which may not be completely error-free. Read speech

has a constant syllable rate and pitch, and no disfluencies, which helps build robust

TTS models. The base model captures the phonotactics and linguistics of the Indian

language, which is adapted to a different speaker using only a small amount of English

data to generate the speaker characteristics in a cross-lingual scenario. The problem is

extremely challenging given that we do not have any lecture data in any Indian language.

We attempt to understand the phonotactic variations between English and

Indian languages in Section 4.2. Building a bilingual model requires handling

bilingual/multilingual text, which is discussed in Section 4.2.1. Further, two speaker

adaptation approaches are discussed in Section 4.3 - one using a statistical parametric

HMM framework and another using a neural network-based end-to-end framework.

The different evaluation techniques and discussions are presented in subsection 4.3.3

and 4.3.4 respectively. Section 4.4 encompasses the summary of the chapter.

4.2 PHONOTACTIC VARIATIONS BETWEEN ENGLISH AND INDIAN

LANGUAGES

The task of speaker-adaptation from English to Indian languages without any speaker’s

data in any Indian language is challenging. This is because English and Indian

languages are phonotactically very different. Phonotactics refers to the set of

permissible phone sequences in a particular language. Even within Indian languages,

the set of rules varies significantly. Indian languages can be categorized into two

language families - Indo-Aryan and Dravidian. In Indo-Aryan languages, schwa

deletion occurs. In contrast, in the case of Dravidian languages, agglutination occurs in

the scripts (multiple words combined to form a single word, leading to longer words)
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(Prakash et al., 2016). English has an entirely different set of phonotactic constraints.
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syllable

Four-phones per 
syllable

Three-phones per 
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syllable

One-phone per syllable

Fig. 4.1: Phonotactic variations between English and Hindi

Statistical analysis of letter clusters by Sen and Samudravijaya (2002) indicates that

‘bh’ and ‘sr’ clusters are infrequent in English. In the same way, clusters like ‘our’

and ‘ion’ are rare in Indian languages. Indian languages are Akshara-based, and most

words/syllables have simple phone clusters (Prakash et al., 2016). English, on the other

hand, has complex phone structures. In English, words like strange and sprint have up

to six phones within a single syllable. An analysis of the number of phones within a

syllable is shown for English and Hindi in Figure 4.1. For this analysis, approximately

3000 text utterances are considered from English and Hindi datasets from read speech

as stated in Section 3.2 and the unique words and syllables are parsed in a common

representation. The common representation will be discussed in Section 4.2.1. In Figure

4.1, it is evident that in English, more than 50% of the syllables are made up of four or

more phones. However, in the case of Hindi, the majority of the syllables have three or

fewer phones. For other Indian languages, the number of phones constituting a syllable

remains more or less similar as depicted for Hindi (Prakash et al., 2016). Another

phonotactic variation is caused by geminates, where a long or doubled consonant occurs

in combination with its shorter counterpart (Davis, 2011). English does not have any

geminates (Davis, 2011) whereas geminates are common in Indian languages. Handling

these phonotactic differences during voice adaptation is very crucial for robust models.
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The phonotactic variations between English and any Indian language are handled in our

work by building a bilingual base model. The model is trained by pooling in English and

an Indian language data. Since English is seen during training, the phonetic rules and

characteristics of English are captured by the base model along with the target language

( Hindi or any other Indian language). This helps in finetuning the model parameters

using only English data to impart speaker mannerisms in an Indian language.

4.2.1 Handling multilingual text

As discussed previously, to account for the phonotactic and acoustic mismatches during

conversion from English to Indian languages, a bilingual (English + Indian language)

TTS is trained as the base model. The text must be given in a common representation

for training a bilingual model. This is because similar sounds across the two languages

need a single representation for training the TTS. For Indian languages, a common

Table 4.1: Illustration of CLS representation of words in different languages

label set (CLS) (Ramani et al., 2013) representation is used to convert the text into

the corresponding phone-level representation. This is done using the unified parser

(Baby et al., 2016a) which generates phoneme and syllable sequences. An English

pronunciation dictionary is used to parse the English word. The CLS representation

of all the words is first created in a monophone and syllable dictionary. If the words

from the training set are not present in the dictionary, they are added to the dictionary
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along with their phone-level representations. The addition is done by transliterating

the words into an Indian language, manually verifying, and parsing using the unified

parser. A sample of words with corresponding phone and syllable level representations

is shown in Table 4.1.

4.3 EXPERIMENTS

The overall block diagram of the steps involved in speaker adaptation from read speech

using conversational speech data is shown in Figure 4.2. In the diagram, Hindi is shown

as an Indian language for training the bilingual model. However, the bilingual model

can be trained using multiple Indian languages in combination with English. After the
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Unified Parser

English <Text,
Audio> Pairs

Pooled Audios
(English + Hindi)
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Pronunciation Dictionary HTS /E2E

Adaptation


Adapted TTS

English Text

Hindi Text

Hindi Audios
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 (English Lectures)
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Speaker : Conversational
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Training of Read speech model 

Adaptation of Read speech model using Conversational speech data 

Fig. 4.2: Block diagram of speaker adaptation

English and the Hindi text are parsed, the read-speech audio and the corresponding

text are pooled and shuffled. Here shuffling represents reordering of the texts and the

audios so that the training data has a good mix of English and Hindi data (text + audio)

instead of having data of only a specific language which might add bias in the model

during training. Then the text and audio pairs are passed on to the training modules of
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the HMM-based speech synthesis system (HTS) or end-to-end (E2E) speech synthesis

system. Now, the lecture data, which is in English, is cleaned either manually or using

data pruning techniques. The parsed text and the corresponding audios are passed as

input to the HTS or E2E adaptation module along with the read-speech model. This

adaptation module imparts speaker characteristics to the synthesized audios. The read

speech model is trained using English and Hindi data of a native Hindi female speaker

represented in Table 4.2. For adaptation, lecture data of CF1 is manually curated to

remove disfluencies, ensure proper sentence endings, and uniform syllable and pitch.

This manually curated data is used for adaptation using both the frameworks. But,

the manual curation stage is time-consuming. Hence, we use the pruning techniques

discussed in Section 3.5.1 to obtain about 1 hour of pruned data of CF1 for adaptation.

This data is adapted using the E2E framework. The details of experiments performed,

along with their naming tags and amount of data used, are given in Table 4.2. The two

adaptation techniques – HMM-based speech synthesis (4.3.1) and End-to-End speech

synthesis (4.3.2) are discussed below.

Table 4.2: Dataset details with tags for different speaker adaptation experiments

Training Adaptation Exp. TagSpeaker Language Duration (Hrs) Speaker Duration (Hrs) Curation
HTS Framework

RF1
Hindi 8.5

CF1 1/2 (English) manual HTS System
English 8.5

E2E Framework

RF1
Hindi 8.5

CF1 1/2 (English) manual E2E_manual
English 8.5

RF1
Hindi 8.5

CF1 1 (English) pruning E2E_auto
English 8.5

RF1
Hindi 8.5

RF5 1/2 (English) read speech E2E_read
English 8.5

RF3
Kannada 8.5

CF1 1 (English) pruning E2E_auto_kan
English 8.5

RF1
Hindi 8.5

CF2 1 (English) pruning E2E_auto_spk2
English 8.5

RF3
Kannada 8.5

CF2 1 (English) pruning E2E_auto_spk2_kan
English 8.5

4.3.1 Speaker adaptation in HTS Framework

The speaker adaptation in HTS takes place along with the training of the base model.

There are two steps involved :
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• Data Segmentation - The text and the audio are segmented into phones and
syllables and the corresponding labels are obtained.

• Training and adaptation - The generated labels are passed to train context-
dependent HMM models, build voices and perform speaker adaptive training

Data Segmentation

The syllables and the phones obtained while parsing the text and the audios are passed

as input to the segmentation module. Initially, a monophonic model is built using a

flat start followed by a forced alignment. To correct the boundaries, HMM models

are trained and corrected using group delay segmentation (Baby et al., 2017). The

waveforms are spliced at the syllable level, and embedded reestimation is performed

iteratively to adapt the monophonic models. Further forced alignment is performed at

the syllable level to obtain phone level boundaries (Shanmugam, 2015). The syllable

boundary labels and the spectral and excitation parameters from the audios are passed

as input to the HTS framework.

System training and adaptation

HMM-based speech synthesis systems (HTS) are one of the most traditional statistical

parametric speech synthesis models. They are known to be robust and synthesize

good-quality speech even with limited data. HTS provides flexibility in mixed-gender

modeling, speaker adaptation, and feature-space adaptive training and is widely used in

speech synthesis (Yamagishi et al., 2009).

We use HTS to adapt to the target speaker (CF1 in this case) as a preliminary

experiment because it requires a small amount of labeled data for adaptation. This

model is referred as the HTS System as given in Table 4.2. Figure 4.3 shows a

block diagram of the basic steps in HTS training and adaptation. The spectral and

the excitation parameters are extracted from the audios and modeled using multistream

HMMs (Yamagishi et al., 2009). The first and second derivatives of the static

features are taken into consideration. The text is transformed into context-dependent

phoneme labels, and context-dependent HMM models are trained. Decision-tree-

based context clustering is performed, and a Gaussian probabilistic density function
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Fig. 4.3: Speaker Adaptation in HTS framework

of averaged voice model is obtained. In our case, we do not have a multi-speaker

database for each language; hence we use just a single speaker. The parameters of

the average voice model, such as mean vectors of output distributions, are reestimated

using the adaptation data in the speaker adaptive training (SAT) stage. The output

state distributions for the target speaker are obtained by Maximum likelihood linear

regression (MLLR) adaptation. The F0 parameters are also obtained similarly by

applying the same algorithm (Junichi, 2006).

During the synthesis stage, the text is converted to phoneme sequences along

with their contexts. The spectral and F0 parameters are predicted from the trained

HMMs along with the phoneme durations and synthesized using the HTS engine

vocoder. The evaluation results of the HTS system are discussed in Section 4.3.3.

47



4.3.2 Speaker adaptation in E2E framework

The English and the Hindi texts are parsed into phone-level representation using CLS

4.2.1. However, the E2E module maps each character into distinct tokens. The mapping

technique proposed by Prakash et al. (2019) is used to ensure that the training is purely

phonetic. An example of phone-based representation used in E2E is shown in Table 4.3

and the mapping technique is discussed in detail in Appendix C. Training the bilingual

read speech model and adaptation using conversational speech data in E2E is similar to

the training discussed in Section 3.5.2. The only difference is that x-vectors are used as

speaker embeddings in this case to impart speaker characteristics. x-vectors are fixed-

length embeddings obtained as the output of a 5-layer Time-Delay Neural Network

(TDNN) architecture (Snyder et al., 2018). A block diagram describing the training and

adaptation stages in the E2E framework is shown in Figure 4.4. The phone-level text

is passed as input to the Tactron2 architecture. The feature extraction module extracts

Mel-spectrograms from the audio, and the x-vector module extracts x-vector for each

utterance. The x-vector embedding is appended to each encoder state in the Tacotron2

architecture. The network is then trained to learn the mappings between the text and

the audio spectrograms using the encoder-decoder architecture with attention. Once the

bilingual model is trained, x-vectors are extracted from the conversational data, and the

model is finetuned similarly. During testing, the mean x-vector of adaptation data is

appended to all the encoder states to synthesize audio in the target speaker’s voice. Two

variations of E2E adapted systems are trained as a part of this work :

• E2E_manual - The adaptation data is curated manually to maintain uniform
syllable rate, pitch, structured sentences, and disfluencies are removed.

• E2E_auto - The adaptation data is curated using pruning techniques discussed in
Section 3.5.1.

The details of data used for each experiment in the E2E framework, along with

the tags, are given in Table 4.2. More data is used in the case of the automatically

pruned model to account for the variations in context and sentence endings which are

prevalent in the case of lectures.
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Table 4.3: Illustrations of phone based representations used in E2E

Fig. 4.4: Speaker Adaptation in End-to-End framework

4.3.3 Evaluation

We perform subjective and objective evaluations for monolingual and bilingual

(Hindi+English) sentences on the systems - HTS System, E2E_manual, and E2E_auto.
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In monolingual synthesis, test sentences are in English. The bilingual Hindi+English

test set is a “cross-lingual” scenario, as the original speaker’s data is in English,

and we are attempting to synthesize bilingual sentences. Bilingual test sentences

are obtained by translating the English transcriptions of the lectures into Hindi while

retaining the technical terms in English. Two types of subjective evaluations are

performed – degraded mean opinion score (DMOS) (Viswanathan and Viswanathan,

2005) and speaker similarity test. For objective evaluations, cosine similarity is

computed for monolingual and bilingual sentences. Mel-cepstral Distortion (MCD)

(Kubichek, 1993) is computed only for monolingual sentences as MCD requires

parallel utterances as we don’t have any speaker’s utterance in Hindi. The demo

audio samples from different speakers and languages can be found in the link

(https://www.iitm.ac.in/donlab/preview/test/index.html)

Mel-cepstral Distortion (MCD)

Synthesized utterances generated from the different systems are compared with respect

to the original audio using dynamically time-warped (DTW) Mel-cepstral distortion

(MCD) scores (Kubichek, 1993). A lower score indicates less distortion, which means

more similarity to the original. 20 unseen English sentences from lecture data are

considered for the MCD calculation. The MCD scores for the three systems are shown

in Figure 4.5.

Cosine Similarity

X-vector embeddings are extracted from the synthesized monolingual and the cross-

lingual utterances as well as the original audios. The cosine similarity between

the system-generated utterances’ x-vectors and the original utterances’ x-vectors is

computed. Twenty utterances have been considered for calculating the cosine similarity.

For monolingual, parallel utterances have been used. In Table 4.4, we observe that the

HTS system receives a low similarity score compared to the E2E_manual and E2E_auto

systems. A lower similarity score is obtained in a cross-lingual scenario compared to

the monolingual case because x-vectors contain some linguistic information (Raj et al.,

2019). Figure 4.6 shows T-SNE plots for utterances synthesized using different systems.
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E2E_manual

E2E_auto
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Fig. 4.5: MCD scores for monolingual utterances

The plot correlates closely with the cosine similarity value, where the HTS synthesized

embeddings are far apart from the original utterance embeddings. Therefore it has

less cosine similarity in both monolingual and cross-lingual cases. E2E_auto and

E2E_manual lie somewhere in between the HTS and the original embeddings; therefore

are more similar.

Table 4.4: Cosine similarity for different systems

Systems Monolingual utterances Cross-lingual utterances
HTS System 0.650 0.594
E2E_manual 0.732 0.698

E2E_auto 0.796 0.754

Speaker Similarity

The speaker similarity test is a subjective evaluation technique extensively used in voice

conversion. A set of unseen utterances synthesized using the different systems are

presented to the listener along with a few original audios of a particular speaker. Two

original audios are presented as references for the target speaker. The listener is asked

to rate the audios based on similarity with respect to the reference audios on a scale

of 1-5 where 5 indicates most similar. The score is then normalized with respect to the

score of the original audios. For speaker similarity, 27 sentences were evaluated (8 from

each system + 3 original). The scores for different systems are shown in Figure 4.7
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Monolingual utterances Cross-lingual utterances

Fig. 4.6: T-SNE plots for monolingual and cross-lingual utterance embeddings
synthesized using different systems

Fig. 4.7: Speaker similarity score for monolingual and cross-lingual utterances

DMOS score

In the DMOS test, listeners rate the quality of the synthesized speech, and the score

is normalized with respect to that of the original speech. DMOS test has already been

discussed in Section 3.5.2. Seventeen listeners participated in the evaluation and rated

25 sentences (7 from each system + 4 original) each for monolingual and cross-lingual

tasks. The DMOS scores for the different systems are shown in Figure 4.8. It is

observed that the E2E_manual system receives the highest rating in terms of system

intelligibility. The HTS system receives a very poor DMOS score. The possible reasons

of low ratings will be discussed in Section 4.3.4.
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Fig. 4.8: DMOS score for monolingual and cross-lingual utterances

Extension to other Indian languages and other speakers

We attempt to convert the voice of the speaker CF1 to a Dravidian language, Kannada,

to verify the scalability of the technique across Indian languages. We have used

automatically pruned adaptation data for this task, and the system is named as

E2E_auto_kan as stated in Table 4.2. A bilingual (English + Kannada) model of

speaker RF3 is built in the E2E framework using attention-based Tacotron2 architecture

in the same way as discussed in Section 4.3.2. It is then adapted using the pruned

adaptation data of speaker CF1. We perform DMOS (3.5.2) and speaker similarity

(4.3.3) tests, and the result is presented in Table 4.5. The DMOS test is performed using

8 unseen Kannada sentences synthesized using the adapted model and two original

sentences and is evaluated by 25 native Kannada speakers. For the speaker similarity

test, native or non-native speakers participated since speaker similarity is language

agnostic. 8 unseen Kannada sentences and two original English sentences of CF1

are used for the evaluation and are rated by 15 evaluators. We attempt to verify that

Table 4.5: Cross-lingual (Kannada) DMOS and speaker similarty scores

System DMOS Score Speaker Similarity score
E2E_auto_kan 3.03 3.359

pruning and cross-lingual adaptation is extendable to other speakers. For this, another

speaker’s data (CF2) has been considered for adaptation, and the same experiments are

performed using bilingual Hindi and the bilingual Kannada models stated previously.

The data used for this experiment is given in Table 4.2 with the tag E2E_auto_spk2 and

E2E_auto_spk2_kan. 20 unseen sentences are synthesized in English and Hindi using

the E2E_auto_spk2, and 20 unseen sentences are synthesized in Kannada using the
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system E2E_auto_spk2_kan. Since subjective evaluations are cumbersome, objective

evaluations such as MCD and cosine similarity have been performed. MCD has been

performed only using the unseen sentences in English, and it is found to be 11.99 which

is close to E2E_auto 4.3 of speaker CF1, which was 10.98. We also perform cosine

similarity and compare the results of CF2 with CF1, and the comparative results are

presented in Table 4.6.

Table 4.6: Cosine similarity values for monolingual and cross-lingual utterances of
different speakers

Speakers English Hindi Kannada
CF1 0.796 0.754 0.666
CF2 0.795 0.767 0.746

4.3.4 Discussion

Why speaker adaptation fails in HTS framework?

Although the MCD score for the HTS system is low, indicating less distortion, the

cosine similarity and the subjective evaluations speak differently. As evident from

Section 4.3.3, the HTS adapted system receives a poor score in speaker similarity and

DMOS even after using manually curated data for adaptation. The synthesized audios

obtained using this system seem to be complete sentences without repetitions but of

poor quality. The critical reasons for the poor quality of synthesized samples could be

one or more of the following:

• The pitch is averaged during training and adaptation in HTS, and our data being
conversational with varying pitch might not be able to form a good distribution
for random sample generation.

• As stated by Yamagishi et al. (2009), a multi-speaker database is expected for
robust speaker adaptation since it provides more generalization to the model.
But we do not have a multi-speaker database for Indian languages. Hence the
synthesis quality degrades.

• Due to multiple tying of states in the case of HMMs, the audios seem to be
muffled. This is because we are training bilingual models, and the phonotactics
of English and Indian languages differ remarkably.

All these reasons affect the quality and speaker similarity in the HTS framework.
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A

B

Fig. 4.9: Spectrogram analysis of an utterance with adaptation in read speech (A) and
conversational speech (B)

Speaker Adaptation in read and conversational speech : A comparative analysis

Prakash and Murthy (2020) states that speaker adaptation using read speech in Indian

languages is feasible with a DMOS score of 4.41 and speaker similarity of 3.95 using

7 mins of adaptation data. But using conversational speech data for adaptation, the

maximum achievable DMOS was found to be 3.65 and a speaker similarity of 3.39. On

the informal evaluation of the synthesized sentences, we notice that the audios generated

using conversational speech adaptation result in trembling and muffling of the voice.

We try to introspect the reason for this by synthesizing 20 common sentences across

a read speech adapted model E2E_read and a conversational speech adapted model

E2E_auto_spk2 as given in Table 4.2. A sample utterance is synthesized using both the

models, and analysis is discussed.

In Figure 4.9, we observe that in read speech adaptation, the spectrogram

captures more information than adaptation in conversational speech, as shown by the

markers. The formants are more clearly visible in the first case. Even in the time

domain representation of the audio, the words ‘In’, ‘pass’, and ‘idea’, which contain

vowels, have distinct representations for read speech. In the case of conversational

speech, the vowel waveforms are not as clear as in the first case.
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B

Fig. 4.10: Pitch contour analysis of an utterance with adaptation in read speech (A) and
conversational speech (B)

In Figure 4.10, we find that the pitch contours are highly discontinuous in the

case of conversational speech adaptation, especially in the region of phrases ‘in order

to’ , ‘on this ’, and ‘consent’. In read speech adaptation, the pitch contours are smooth

and uniform. As discussed in Section 3.3.2, pitch fluctuations were visible at the end of

an utterance. A similar trend is seen even after adapting a base read speech model using

conversational speech data. Due to the lack of context and abrupt sentence endings

in conversational speech, it gets very difficult to detect a sentence’s end, resulting in

arbitrary pitch at the end of the sentence. There is a smooth transition of the pitch in the

case of read speech, indicating the end of the sentence. These pitch fluctuations might

cause trembling in the synthesized utterances in conversational speech adaptation. In

the short-term energy plots of Figure 4.11, the silence boundaries of the two utterances

are marked in red. We notice that the silence regions are carefully represented with low

energy in the case of read speech adapted utterance. In contrast, the silence regions

have some high energy components in utterance adapted using conversational speech.

Also, there is an extended silence region at the end of the utterance synthesized using

lecture data. But some energy can be seen even in those regions that might influence

the utterance’s intelligibility.

In Figure 4.12 we observe that the short-term energy fluctuations are higher in the
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B

Fig. 4.11: Silence analysis of an utterance with adaptation in read speech (A) and
conversational speech (B)

A

B

Fig. 4.12: Short term energy analysis of an utterance with adaptation in read speech (A)
and conversational speech (B)

case of conversational speech adapted utterance. In comparison the utterance adapted

using read speech shows that STE transitions are smooth.

All these reasons might account for the trembling voice when we use

conversational speech data for voice adaptation.
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4.4 SUMMARY

In this chapter, we discussed techniques for handling bilingual or multi-lingual text.

We used conversational lecture data in English for speaker adaptation in a low-resource

scenario to generate voices in Indian languages. The base model is built using read

speech and adapted using English data. We show how the model can scale to multiple

speakers and languages. However, the intelligibility is still not at par with that of read

speech adapted models. We further introspect the possible causes of this degradation

in synthesis quality. The experiments and the results form a foundational block for

further exploration in conversational speech voice adaptation in Indian languages with

less amount of data.
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CHAPTER 5

CONCLUSION

5.1 SUMMARY

The thesis is an attempt to understand the characteristics of conversational speech

primarily in the context of building real-time conversational TTS systems. Further,

a more ambitious task of voice adaptation using lecture data has been attempted. The

demand for spontaneous and expressive TTS has increased tremendously with the rapid

increase in chatbots, voice assistants, and other online platforms which provide real-

time user interfaces. Imparting human-like characteristics into the system-generated

voice is a new challenge. It is imperative to understand the fundamental difference

between read speech and conversational speech to build robust TTS models. Read

speech systems have already achieved a human-like quality. However, it generates

impassive speech, which is not user interactive. The vision is to achieve a human-

like quality with prosodic modulations and expressions in system-generated voice. Our

work primarily focuses on classroom lecture data and attempts to use this conversational

data to generate the speaker’s voice in a target Indian language. Several interesting

analyses in due course conclude that conversational speech voice adaptation is much

harder compared to read speech. Attempting conversational speech voice adaptation

in a cross-lingual scenario to generate Indian languages, which are low-resourced and

phonotactically different, is a tall order.

The predominant factors which differentiate read and conversational speech have

been identified. We observe how syllable rate, pitch, SNR, and ASR errors percolate

into system training and affect the model’s robustness. A pruning module has been

introduced in Chapter 3 based on a few parameters to prune the inadequate data before

training/adaptation. Although the model is still not comparable to read-speech systems

even after pruning, the synthesized audios, in some instances, sound more natural with

voice modulations. This is encouraging as it demonstrates that building text-to-speech

systems using classroom lectures is feasible. However, more research in this direction



is needed to identify if any other factors degrade the model intelligibility apart from the

ones discussed in Chapter 3.

The second part of the thesis discusses voice adaptation approaches using a

minimum amount of conversational speech data in Chapter 4. A robust read-speech

bilingual model is trained as the base model to handle phonotactic variations. A

study on phonotactics between English and Hindi shows the variability in these two

languages. The HTS-adapted system generates complete sentences without repetitions

as the modeling is done at the phone level. However, the intelligibility and speaker

similarity are inconsistent with the end-to-end adapted models. The reasons for the

deterioration in quality are further analyzed. A comparison between speaker adaptation

in read speech and conversational speech is performed. It suggests that the intricate

details in terms of pitch contour discontinuity, energy fluctuations, etc., which are seen

in the original utterances of conversational speech, are reflected even in the synthesized

sentences. The evaluations demonstrate that a DMOS of 3.39 and speaker similarity of

3.65 is best achieved so far using automated techniques in cross-lingual adaptation.

The thesis forms the foundation for any research encompassing conversational

text-to-speech synthesis, voice conversion, and voice adaptation. Results of cross-

lingual voice adaptation to Indian languages using only the speaker’s English data

motivate further exploration in this field. The thesis also shows what has been achieved

so far in voice adaptation in the speech-to-speech pipeline for lecture transcreation in

Indian languages.

5.2 CRITICISM OF THE THESIS

Transformer-based architecture like Fastspeech and Fastspeech2 can be tried out. Since

Fastspeech2 explicitly models the pitch, it can be an added advantage in modeling the

pitch fluctuations in conversational speech. Global style token (GST) in addition to the

x-vector embeddings can be tried for adding expressions and speaker mannerisms in the

synthesized speech.

In the HTS framework, a multi-speaker database for each Indian language can be

used for training the base model to create robust average voice models leading to better

speaker adaptation. Currently, we do not have a multi-speaker dataset for each Indian
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language.

5.3 SCOPE OF FUTURE RESEARCH

The work discussed in this thesis encompasses conversational speech, cross-lingual

voice conversion and adaptation, and Indian language speech synthesis. Hence it can

be branched further into various interesting research directions.

More exploration in conversational speech is needed to build robust speech

synthesis models that mimic human expressions and prosody. Since the availability

of accurate transcriptions is a significant bottleneck in this problem, transcription-

free or speech-to-speech voice conversion techniques can be attempted. Acoustic unit

discovery for conversational speech can help remove transcription errors and generate a

direct mapping between the source and target acoustics. Spectral mapping using linear-

predictive spectrum and linear predictive residual can also be tried out for generating

the target voice. ASR, in tandem with the TTS module, can be tried out for cross-lingual

voice adaptation.

Disfluencies and filler words often add to the challenges in spontaneous speech.

Automatic disfluency identification and removal techniques can be explored to curate

the data further. Analysis of the speaking rate of the professors during a lecture can

be analyzed. This can help in position-driven adaptation for more naturalness in a

particular region of a lecture after video transcreation. This work forms the foundation

to demonstrate that personalized TTS systems can be built using pruning techniques.

The work is extendable to multiple Indian languages and multiple speakers.
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APPENDIX A

Conversational Speech Dataset

Speaker_ID Speaker Course No. Course Name Duration (Hrs)

CM1 Madhavan Mukund 106106145
Programming, Data Structures &

Algorithms using Python

1/2

CM2 Partha Pratim Das 106105151 Programming in C++ 1/2

CM3 Joydeep Dutta 111104085
Basic Calculus for Engineers,

Scientists and Economists

1/2

CM4 M.R Shenoy 115102103 Semiconductor Optoelectronics 1/2

CM5 Arjun Ghosh 109102156 Text, Textuality and Digital Media 1/2

CM6 Mitesh M. Khapra 106106184 Deep Learning Part-1 1/2

CM7 S.R. Kale 112102255 Thermodynamics 1/2

CM8 K. Ramesh 112106065 Engineering Fracture Mechanics 1/2

CM9 Arun K.Tangirala 103106120
Introduction to Statistical

Hypothesis Testing

1/2

CM10 Ashish Saxena 109104136 Development of Sociology in India 1/2

CM11 Girish Kumar 108101092 Antennas ≈ 43



Speaker_ID Speaker Course No. Course Name Duration (Hrs)

CF1 Deepa Venkatish 108106167
Fiber Optic Communication

Technology

≈ 45

CF2 Rashmi Gaur 109107154
Body Language : Key to

Professional Success

≈ 22

CF3 Kamlesh Singh 109102157 Positive Psychology 1/2

CF4 Sneha Singh 112107290
Acoustic Materials and

Metamaterials

1/2

CF5 Jhumkee Iyengar 109104109
Understanding Design Thinking &

People Centred Design

1/2

CF6 Meenakshi D’Souza 106101163 Software Testing ≈ 40

CF7 Vatsala Misra 121104005
Introduction to Japanese Language

And Culture

1/2

CF8 Sujatha Srinivasan 112106248 Mechanics of Human Movement 1/2

CF9 Rinku Mukherjee 112106190 Introduction to Boundary Layers 1/2

CF10 Merin Simi Raj 109106171
Literary Criticism (From Plato to

Leavis)

1/2
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APPENDIX B

Common Label Set
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APPENDIX C

Phone mapping technique for End-to-End TTS Systems

CLS Notation Single - character
Notation

khq ख़

kq क़

ln ൾ

lw ൽ

lx ള

mq M

nd ऩ

ng ङ

nj ञ

nk

nw ൺ

nx ण

ou औ

ph P

rq R

rqw ॠ

rw ർ

rx ऱ

sh श

sx ष

th थ

tx ट

txh ठ

wv W

zh Z

CLS Notation Single - character
Notation

aa A

axx अ

ii I

uu U

ee E

oo O

nn N

ae ऍ

ag ऽ

au औ

ax ऑ

bh B

ch C

dh ध

dx ड

dxh ढ

dxhq ढ़

dxq ड़

ei ऐ

ai ऐ

eu

gh घ

gq ग़

hq H

jh J

kh ख
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